
소프트웨어 공학

Lecture #2: 프로세스

최은만 저

6차 개정판



2

학습 목표

l 소프트웨어 프로세스

l 바람직한 프로세스의 특징

l 소프트웨어 프로세스 모델

l 지원 프로세스



3

프로세스

l 정의
l 어떤 일을 하기 위한 특별한 방법으로 일반적으로 단계나 작업으로 구성

됨(웹스터 영어 사전)

l 소프트웨어를 개발하는 과정, 즉 작업 순서
l 순서제약이 있는 작업의 집합
l 높은 품질과 생산성이 목표

l 프로세스가 없는 개발
l Code-and-fix



4

프로세스와 방법론의 비교

프로세스 방법론

특징

• 단계적인 작업의 틀을 정의한 것
• 무엇을 하는가에 중점
• 결과물이 표현에 대하여 언급 없음
• 패러다임에 독립적
• 각 단계가 다른 방법론으로도 실현

가능

• 프로세스의 구체적인 구현에 이름
• 어떻게 하는가에 중점
• 결과물을 어떻게 표현하는지 표시
• 패러다임에 종속적
• 각 단계의 절차, 기술, 가이드라인

을 제시

사례

• 폭포수 프로세스
• 나선형 프로세스
• 프로토타이핑 프로세스
• Unified 프로세스
• 애자일 프로세스

• 구조적 분석, 설계 방법론
• 객체지향 방법론
• 컴포넌트
• 애자일 방법론



5

2.1 소프트웨어 프로세스

l 소프트웨어 개발에 대한 기술적, 관리적 이슈를 다루는 작업
l 개발 모델별 컴포넌트 프로세스, 부프로세스 존재
l 서로 다른 목적
l 서로 협력하여 전체 목적을 만족



6

프로세스와 프로세스 모델

l 소프트웨어 프로젝트
l 수행할 작업을 조직화한 프로세스를 이용
l 비용, 일정, 품질에 대한 목표를 성취하는 것

l 프로세스 명세
l 프로젝트에서 수행하여야 하는 작업과 이들의 수행 순서를 정의
l 실행 프로세스는 다를 수 있음

l 프로세스 모델
l 일반적인 프로세스를 기술한 것
l 작업의 단계와 순서
l 각 단계 작업 수행의 제약사항이나 조건 등을 모아 놓은 것



7

프로세스의 종류

l 프로젝트의 중심 프로세스
l 개발 프로세스
l 관리 프로세스

l 기타 프로세스
l 형상 관리 프로세스
l 프로세스 관리 프로세스



8

프로세스의 정의

l 작업 결과와 검증 조건을 명확히 정의하여야 함

l 작업 방법

l 진입 조건, 출구 조건



9

2.2 바람직한 프로세스의 특징(1)

l 예측 가능성

l 테스팅과 유지보수 지원



10

바람직한 프로세스의 특징(2)

l 변경 지원 – 변경을 쉽게 다룰 수 있는 프로세스

l 결함 제거



11

2.3 소프트웨어 개발 프로세스

l 프로세스 모델
l 일반적인 모델이 될만한 프로세스를 기술한 것

l 대표적인 프로세스 모델
l 폭포수 모델
l 프로토타이핑 모델
l 점증적 모델
l V 모형
l 일정 중심 설계 모델
l 진화적 출시 모델
l 애자일 모델



12

l 소프트웨어 생명주기

소프트웨어 생명주기



13

SE와 유사한 작업들

l 건물의 건축



14

계획

l 다음 질문의 대답을 찾는 단계
l How much will it cost?
l How long will it take?
l How many people will it take?
l What might go wrong?

l 범위 정하기
l 산정(Estimation)
l 리스크 분석
l 일정 계획
l 관리 전략 수립

Why 단계

ROI

Concept 정립



15

요구 분석

l 요구 – 시스템이 가져야 할 능력(capability)과 조건(condition)
l What 의 단계
l 응용 분야(도메인)에 집중
l 가장 중요하고도 어려운 단계

l 조그만 차이가 큰 오류로 변함

l 결과물: 요구분석서(SRS)



16

설계

l How의 단계
l 솔루션에 집중
l 아키텍처 설계
l 데이터베이스 설계
l UI 설계
l 상세 설계
l 결과물: 설계서(SD)



17

구현

l ‘Do it’ 단계
l 코딩과 단위 테스트
l 설계 또는 통합 단계와 겹치기도 함

l 전체 일정을 줄이기 위하여
l 협력 작업이 필요한 경우

l 특징
l 압력 증가
l 최고의 인력 투입

l 이슈
l Last minute change
l Communication overhead
l 하청 관리



18

통합과 테스트

l 병행
l 통합해 나가면서 테스트 시작

l 모듈의 통합으로 시작
l 점차 완성된 모듈을 추가
l 통합은 개발자가 주로 담당
l 테스트는 QA 팀이 주로 담당
l 단계적인 테스트

l 단위, 통합, 시스템

l 목적 중심 테스트
l 스트레스 테스트, 성능 테스트, 베타 테스트, Acceptance 테스트, 

Usability 테스트



19

설치와 유지보수

l 시스템의 타입에 따라 다른 설치 방법
l Web-based, CD-ROM, in-house, etc.

l 이전(Migration) 정책
l 시스템의 사용을 시작하게 하는 방법

l 병행 운용

l 설치는 개발 프로젝트의 일부, 유지보수는 별개
l 유지보수

l 결함을 고침
l 새 기능 추가
l 성능 추가



20

(1) 폭포수(waterfall) 모델



21

l 1970년대 소개

l 항공 방위 소프트웨어 개발 경험으로 습득

l 각 단계가 다음 단계 시작 전에 끝나야 함

l 순서적 - 각 단계 사이에 중복이나 상호작용이 없음

l 각 단계의 결과는 다음 단계가 시작 되기 전에 점검

l 바로 전단계로 피드백

l 단순하거나 응용 분야를 잘 알고 있는 경우 적합

l 한 번의 과정, 비전문가가 사용할 시스템 개발에 적합

l 결과물 정의가 중요

l Method vs. Methodology

폭포수(waterfall) 모델



22

폭포수 모델의 단계별 결과물



23

l 장점

l 프로세스가 단순하여 초보자가 쉽게 적용 가능

l 중간 산출물이 명확, 관리하기 좋음

l 코드 생성 전 충분한 연구와 분석 단계

l 단점

l 처음 단계의 지나치게 강조하면 코딩, 테스트가 지연

l 각 단계의 전환에 많은 노력

l 프로토타입과 재사용의 기회가 줄어듦

l 소용 없는 다종의 문서를 생산할 가능성 있음

l 적용

l 이미 잘 알고 있는 문제나 연구 중심 문제에 적합

l 변화가 적은 프로젝트에 적합

폭포수 모형의 장단점



24

l Rapid Prototyping Model(RAD)

(2) 프로토타이핑 모델



25

l 프로토타입(시범 시스템)의 적용

l 사용자의 요구를 더 정확히 추출

l 알고리즘의 타당성, 운영체제와의 조화, 인터페이스의 시험 제작

l 프로토타이핑 도구

l 화면 생성기

l 비주얼 프로그래밍, 4세대 언어 등

l 공동의 참조 모델

l 사용자와 개발자의 의사소통을 도와주는 좋은 매개체

l 프로토타입의 목적

l 단순한 요구 추출 – 만들고 버림

l 제작 가능성 타진 - 개발 단계에서 유지보수가 이루어짐

프로토타이핑 모델



26

프로토타이핑 모델의 장단점

l 장점

l 사용자의 의견 반영이 잘 됨

l 사용자가 더 관심을 가지고 참여할 수 있고 개발자는 요구를 더 정확히
도출할 수 있음

l 단점

l 오해, 기대심리 유발

l 관리가 어려움(중간 산출물 정의가 난해)

l 적용

l 개발 착수 시점에 요구가 불투명할 때

l 실험적으로 실현 가능성을 타진해 보고 싶을 때

l 혁신적인 기술을 사용해 보고 싶을 때



27

l 개발 사이클이 짧은 환경
l 빠른 시간 안에 시장에 출시하여야 이윤에 직결
l 개발 시간을 줄이는 법 – 시스템을 나누어 릴리스

(3) 진화적 모델



28

l 릴리스 구성 방법

l 점증적 방법 – 기능별로 릴리스

l 반복적 방법 – 릴리스 할 때마다 기능의 완성도를 높임

l 단계적 개발

l 기능이 부족하더라도 초기에 사용 교육 가능

l 처음 시장에 내놓는 소프트웨어는 시장을 빨리 형성시킬 수 있음

l 자주 릴리스 하면 가동 중인 시스템에서 일어나는 예상하지 못했던 문제
를 신속 꾸준히 고쳐나갈 수 있음.

l 개발 팀이 릴리스마다 다른 전문 영역에 초점 둘 수 있음. 

진화적 모델



29

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

(4) 나선형(spiral) 모델



30

l 소프트웨어의 기능을 나누어 점증적으로 개발

l 실패의 위험을 줄임

l 테스트 용이

l 피드백

l 여러 번의 점증적인 릴리스(incremental releases) 

l Boehm이 제안

l 진화 단계

l 계획 수립(planning): 목표, 기능 선택, 제약 조건의 결정

l 위험 분석(risk analysis): 기능 선택의 우선순위, 위험요소의 분석

l 개발(engineering): 선택된 기능의 개발

l 평가(evaluation): 개발 결과의 평가

나선형(spiral) 모델



31

l 장점

l 대규모 시스템 개발에 적합 - risk reduction mechanism

l 반복적인 개발 및 테스트 - 강인성 향상

l 한 사이클에 추가 못한 기능은 다음 단계에 추가 가능

l 단점

l 관리가 중요

l 위험 분석이 중요

l 새로운 모형

l 적용

l 재정적 또는 기술적으로 위험 부담이 큰 경우

l 요구 사항이나 아키텍처 이해에 어려운 경우

나선형(spiral) 모델의 장단점



32

(5) V 모델



33

l 폭포수 모형의 변형

l 감추어진 반복과 재 작업을 드러냄

l 작업과 결과의 검증에 초점

l 장점

l 오류를 줄일 수 있음

l 단점

l 반복이 없어 변경을 다루기가 쉽지 않음

l 적용

l 신뢰성이 높이 요구되는 분야

V 모델



34

(6) Unified 프로세스



35

l 사용 사례 중심의 프로세스

l 시스템 개발 초기에 아키텍처와 전체적인 구조를 확정

l 아키텍처 중심

l 반복적이고 점증적

Unified 프로세스



36

l 폭포수 프로세스의 단점을 해결

l 절차와 도구보다 개인과 소통을 중요시 한다

l 잘 쓴 문서보다는 실행되는 소프트웨어에 더 가치를 둔다

l 계약 절충보다는 고객 협력을 더 중요하게 여긴다

l 계획을 따라 하는 것보다 변경에 잘 대응하는 것을 중요하게 여긴다

(7) 애자일 프로세스



37

l 사용사례 또는 사용자 스토리나 피처 단위

l 테스트 중심 개발(Test Driven Development)

애자일 프로세스



38

2.4 지원 프로세스

l ISO/IEC 12207에서의 프로세스 그룹



Questions?


